Karla Bastos Guedes

Simulação Eficiente do Sistema Elétrico de Potência Utilizando Filtragem Digital Multitaxa

Tese de Doutorado

Tese apresentada ao Departamento de Engenharia Elétrica da PUC-Rio como parte dos requisitos para obtenção do Título de Doutor em Ciências em Engenharia Elétrica.

Orientador: Jacques Szczupak

Co-orientador: Sebastião E. M. de Oliveira

Rio de Janeiro Setembro de 2002

Karla Bastos Guedes

Simulação Eficiente do Sistema Elétrico de Potência Utilizando Filtragem Digital Multitaxa

Tese apresentada como requisito para a obtenção do grau de Doutor pelo programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Jacques Szczupak Orientador Departamento de Engenharia Elétrica – PUC-Rio

> > Prof. Carlos Augusto Duque UFJF

Prof. Glauco Nery Taranto COPPE/UFRJ

Prof. Julio Cesar Stachinni de Souza UFF

> Prof. Djalma Mosqueira Falcão COPPE/UFRJ

Prof. Antonio Carlos Siqueira de Lima EE/UFRJ

Prof. Ney Augusto Dumont Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 30 de setembro de 2002.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e dos orientadores.

Karla Bastos Guedes

Graduou-se em Engenharia Elétrica na Universidade Federal Fluminense em 1988. Concluiu o Mestrado em Engenharia Elétrica com ênfase em Sistemas Elétricos de Potência na PUC-Rio em 1996. É professora do Departamento de Geometria do Instituto de Matemática da Universidade Federal Fluminense.

Ficha Catalográfica

Guedes, Karla Bastos

Simulação eficiente do sistema elétrico de potência utilizando filtragem digital multitaxa / Karla Bastos Guedes; orientador: Jacques Szczupak; co-orientador: Sebastião E. M. de Oliveira. – Rio de Janeiro : PUC, Departamento de Engenharia Elétrica, 2002.

[15], 110 f. : il. ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

Engenharia elétrica – Teses. 2. Simulador. 3.
Redes elétricas lineares. 4. Filtragem digital multitaxa.
I. Szczupak, Jacques. II. Oliveira, Sebastião E. M. de.
III. Pontifícia Universidade Católica do Rio de Janeiro.
Departamento de Engenharia Elétrica. IV. Título.

CDD:621.3

"Três paixões, simples porém irresistivelmente fortes, governaram a minha vida: o desejo de amar, a busca do conhecimento e uma compaixão insuportável pelo sofrimento da humanidade". Bertrand Russel

> "O progresso da ciência nada significa enquanto existirem crianças infelizes". Albert Einstein

"Eu sustento que a única finalidade da ciência é aliviar a miséria da existência humana". Berthold Bretch PUC-Rio - Certificação Digital Nº 9816569/CA

Aos meus queridos filhos

Renata, Vicente e Theo.

Agradecimentos

A Deus, minha família, meus amigos e todos que direta ou indiretamente contribuíram para a realização deste trabalho, em especial:

Ao professor orientador Jacques Szczupak, pelas idéias, estímulo, compreensão e toda a colaboração e orientação que tornaram viáveis a realização deste trabalho.

Ao professor co-orientador Sebastião E. M. de Oliveira, pelo apoio oferecido durante o desenvolvimento deste trabalho.

À querida professora Leontina, pelas sugestões nas escolhas do orientador e do co-orientador.

À PUC-Rio, pela bolsa de isenção concedida.

Aos professores do Departamento de Geometria da UFF, que tornaram possível a minha dedicação exclusiva a esta pesquisa.

Aos funcionários da secretaria de pós-graduação do DEE da PUC-Rio, Ana, Alcina, Mário e Márcia, pela ajuda, amizade e carinho que sempre ofereceram.

À amiga Silvana Faceroli, pela colaboração e excelente parceria em momentos muito importantes deste trabalho.

Aos professores que participaram da banca, Antonio Carlos, Júlio César, Carlos Duque, Glauco e Djalma, pelos enriquecedores comentários e sugestões apresentadas.

Ao amigo Marco Antônio Cetale e todos os colegas da PUC-Rio.

Aos meus pais, Luiz Fernando e Maria Auxiliadora e à minha avó Florinda, merecedores da minha eterna gratidão, por tudo.

E finalmente, a todos os professores e mestres que a vida me ofereceu.

Resumo

Guedes, Karla Bastos; Szczupak, Jacques (Orientador); Oliveira, Sebastião E. M. de (Co-orientador). Simulação Eficiente do Sistema Elétrico de **Potência Utilizando Filtragem Digital Multitaxa**. Rio de Janeiro, 2002. 125p. Tese de Doutorado – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Esta pesquisa propõe a implementação de um simulador para investigar o comportamento dinâmico dos sistemas elétricos de potência e a sua estabilidade. É introduzida uma nova abordagem para simulação de redes elétricas lineares, que segue as técnicas básicas e os modelos utilizados no EMTP (simulador tradicional), porém levando vantagem ao utilizar propriedades de filtragem digital multitaxa. O simulador proposto decompõe o sinal e a rede em sub-bandas de freqüência, cada uma delas operada independentemente, o que torna o processo bastante interessante para a implementação utilizando processamento em paralelo. O passo de integração nas simulações das sub-bandas é sempre maximizado, reduzindo a carga computacional. A simulação permite a detecção em tempo real de sub-bandas que poderiam ser momentaneamente desconectadas, sem perda de precisão no resultado final. Este comportamento adaptativo aumenta a eficiência do simulador, ajustando a complexidade do modelo de acordo com os requisitos da simulação.

Palavras-chave

Simulador, redes elétricas lineares, filtragem digital multitaxa.

Abstract

Guedes, Karla Bastos; Szczupak, Jacques (Advisor); Oliveira, Sebastião E. M. de (Advisor). **Efficient Simulation of the Electric Power System using Multirate Digital Filtering**. Rio de Janeiro, 2002. 125p. DSc. Dissertation – Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

This work proposes the implementation of a simulator to investigate the dynamic behavior and the stability of electric power systems. A new approach to linear electric network simulation is introduced, closely following the EMTP basic techniques and models, but taking advantage of multirate digital filter properties. The final simulator decomposes signals and network models into subbands of frequencies, each of them independently operated, allowing parallel processing The integration time step in the subband simulations is always maximized, reducing computational burden. The simulation permits online detection of subbands that could be momentarily disconnected with negligible loss of accuracy in the final result. This adaptive feature further improves efficiency, adjusting the network model complexity, according to the simulation requirements.

Keywords

Simulator, linear electrical networks, multirate digital filtering.

Sumário

Lista de Figuras	12
Lista de Tabelas	15
1. Introdução	16
1.1. Considerações Gerais	16
1.2. Objetivos e estrutura da tese	18
2. O simulador tradicional	20
2.1. Introdução	20
2.2. Topologia de redes elétricas	21
2.3. Alguns conceitos básicos de teoria de grafos lineares	21
2.3.1. Grafo linear	21
2.3.2. Subgrafo	22
2.3.3. Grafo orientado e não-orientado	22
2.3.4. Caminho	22
2.3.5. Grafo conexo	23
2.3.6. Circuito	23
2.3.7. Árvore	23
2.3.8. Corte	24
2.3.9. Matriz Incidência	24
2.4. Modelagem analógica da rede elétrica	25
2.5. Modelagem digital da rede elétrica	28
2.5.1. Modelo digital do elemento linear a parâmetro concentrado L	29
2.5.2. Modelo digital do elemento linear a parâmetro concentrado C	30
2.5.3. Modelo digital do elemento linear a parâmetro concentrado R	31
2.5.4. Modelo digital do ramo geral	31
2.5.5. Modelo digital de redes elétricas monofásicas	32
2.5.6. Modelo digital de redes elétricas trifásicas	36
2.6. Exemplos de modelagem e simulação	37
2.6.1. Simulação de redes elétricas monofásicas – Sistema-teste 1	38

2.6.2. Simulação de redes elétricas trifásicas – Sistema-teste	41
2.7. Conclusões	44
3. Conceitos básicos de filtragem digital multitaxa	45
3.1. Introdução	45
3.2. Filtros digitais	45
3.2.1. Estrutura básica de filtros digitais FIR	46
3.2.2. Estrutura básica de filtros digitais IIR	47
3.3. O decimador	48
3.4. O expansor ou interpolador	50
3.5. Equivalências e Identidades nobres	52
3.6. Bancos de filtros digitais	53
3.7. Bancos de filtros de reconstrução perfeita	55
3.8. Exemplos de bancos de filtros	58
3.9. Conclusões	61
4. O simulador proposto	62
4.1. Introdução	62
4.2. Modelagem digital da rede elétrica em sub-bandas de freqüência	63
4.3. Os simuladores multitaxa	65
4.4. Processo automático para alteração da taxa de amostragem	69
4.5. Processo automático de comutação entre os simuladores	73
4.6. Simulador multitaxa para sinais de faixa estreita de freqüência	74
4.7. Exemplos ilustrativos	82
4.7.1. Sistema-teste 3	82
4.7.2. Sistema-teste 4	88
4.8. Conclusões	91
5. Modelagem da máquina síncrona e seus controles associados	92
5.1. Introdução	92
5.2. Princípio de funcionamento dos geradores síncronos	92
5.3. Modelagem da máquina síncrona	93
5.3.1. Modelagem elétrica	94

5.3.2.	Modelagem do sistema mecânico	97
5.4.	Modelagem do sistema de controle de tensão da máquina	
	síncrona	98
5.4.1.	Controle de tensão do tipo a	98
5.4.2.	Controle de tensão do tipo b	99
5.5.	Modelagem do sistema de controle de velocidade da máquina	
	síncrona	100
5.6.	Inserção das equações discretizadas do gerador síncrono nos	
	simuladores multitaxa	102
5.7.	Esquema de predição	105
5.8.	Oscilações numéricas nos resultados das simulações	105
5.8.1.	A transformação bilinear	106
5.8.2.	Equivalência entre a transformação bilinear e a regra de	
integra	ação trapezoidal	106
5.8.3.	Procedimento para correção das oscilações numéricas	107
5.9.	Exemplos Ilustrativos	107
5.9.1	Sistema-teste 5	108
5.10.	Conclusões	113
6. Co	omparação de carga computacional	115
6.1. In	itrodução	115
6.2. Ta	abelas comparativas	115
6.3.	Conclusões	117
7. Co	onclusões	118
7.1. P	rincipais contribuições	119
7.2. S	ugestões para trabalhos futuros	119
8. Re	eferências bibliográficas	121
Apêno contro	dice A. Dados dos geradores síncronos e de seus sistemas de ple	125

Lista de figuras

Figura (2.1) - (a) Circuito; (b) Grafo correspondente	21
Figura (2.2) - (a) Grafo orientado;(b) Grafo não-orientado.	22
Figura (2.3) - Modelo analógico do ramo geral.	25
Figura (2.4) - Modelo discreto do indutor.	28
Figura (2.5) - Modelo discreto do capacitor.	30
Figura (2.6) - Modelo discreto do ramo geral.	31
Figura (2.7) - Sistema-teste 1.	38
Figura (2.8) - Grafo associado ao Sistema-teste 1.	38
Figura (2.9) - Corrente no ramo 3 do Sistema-teste 1.	40
Figura (2.10) - Tensão 6 na barra 3 do Sistema-teste 1.	40
Figura (2.11) - Sistema-teste 2.	41
Figura (2.12) - Grafo associado ao Sistema-teste 2.	41
Figura (2.13) - Tensão na barra 1 do Sistema-teste 2	43
Figura (2.14) - Corrente no ramo 5 do Sistema-teste 2.	43
Figura (3.1) - Filtro digital.	46
Figura (3.2)- Exemplo de estrutura de filtros digitais FIR de terceira	
ordem.	46
Figura (3.3) - Exemplo de estrutura não canônica de filtros digitais	
IIR de terceira ordem.	47
Figura (3.4) - Bloco operador decimador por M antecedido por filtro.	48
Figura (3.5) - Demonstração de decimação no domínio do tempo M=2.	48
Figura (3.6) - Ilustração de decimação no domínio da freqüência	
(sem a ocorrência de superposição ou "aliasing"), M=2.	49
Figura (3.7) - Ilustração de decimação no domínio da freqüência	
(com a ocorrência de superposição ou "aliasing"), M=3.	50
Figura (3.8) - Bloco expansor por L seguido de filtro seletivo.	50
Figura (3.9) - Demonstração do expansor no domínio do tempo, L=2	51
Figura (3.10) - Ilustração do expansor no domínio da freqüência, L=2	51
Figura (3.11) - Equivalências ou identidades simples utilizadas em	
sistemas multitaxa.	52
Figura (3.12) - Identidades nobres utilizadas em sistemas multitaxa.	53
Figura (3.13) - (a) Banco de filtros de análise; (b) Banco de filtros de	
síntese.	53
Figura (3.14) - Representação de filtragem multitaxa por árvore binária	54
Figura (3.15) - Representação por componentes polifásicos.	54
Figura (3.16) -Sinal de entrada x(n) e sinal reconstruído.	59
Figura (3.17) - Atraso do sinal reconstruído em relação ao sinal de	
entrada x(n).	59
Figura (3.18) - Superposição dos sinais x(n), e erro.	60
Figura(3.19)- Exemplo de filtragem por banco de reconstrução perfeita	61
Figura (4.1) - Simulador com um nível de decomposição em	
sub-bandas.	65

Figura (4.2) - Simulador com dois níveis de decomposição em sub-	00
bandas. Decomposição não uniforme.	66
handas, Decomposição pão uniforme	66
Figura (4.4) - Diagrama de blocos das equações inseridas em simu-	00
lador com um nível de decomposição	67
Figura (4.5) - Equações (4.7) e (4.8) escritas em forma de diagrama	07
de blocos.	68
Figura (4.6) - Exemplo de decimação em banço de filtros do tipo	
árvore binária.	69
Figura (4.7) - Processo automático para desativar sub-banda.	70
Figura(4.8)- Energia do sinal de alta freqüência.	71
Figura(4.9) - Simulação multitaxa que utilizou o valor de ξ=0.001 no	
processo automático de variação da taxa de amostragem.	72
Figura(4.10) - Simulação multitaxa que utilizou o valor de ξ=0.1 no	
processo automático de variação da taxa de amostragem.	72
Figura(4.11) - Comutação entre os simuladores.	73
Figura (4.12) - (a) Resposta típica de um filtro causal; (b) Resposta	
típica de um filtro ideal.	74
Figura (4.13) - Simulador multitaxa para sinais de faixa estreita de	
freqüência.	75
Figura (4.14) - Resultado das decimações por 2 de um sinal de faixa	
estreita com as frequências analógicas correspondentes indicadas	
em superposição aos angulos que traduzem as frequencias digitais,	70
relativas a de amostragem.	76
Figura (4.15) - Efeito da decimação por 2 no no espectro de	77
Figure (4.16) Decenstrução de sincl de simulador multitovo 7	70
Figura (4.10) - Reconstrução do sindi do sindidor multidad 7. Figura (4.17) - Ampliação da região marcada na Figura (4.16)	70 70
Figura (4.17) - Ampliação da região marcada na Figura (4.10). Figura (4.18) - Comparação entre o espectro em fregüência dos	19
sinais do simulador tradicional e do simulador multitava 7	70
Figura (4 19) - Resultado da primeira etana das decimações por 2	15
de um sinal de faixa estreita	80
Figura (4.20) - Resultado da segunda etapa das decimações por 2	00
de um sinal de faixa estreita.	81
Figura (4.21) - Diagrama unifilar do sistema-teste 3	83
Figura (4.22) - Corrente na carga L6 do Sistema-teste 3 utilizando o	
simulador tradicional e o simulador com 1 nível de divisão em	
sub-bandas.	84
Figura (4.23) - Atraso do simulador 1 em relação ao simulador	
tradicional	84
Figura (4.24) - Corrente na carga L6 do Sistema-teste 3 utilizando o	
simulador tradicional e o simulador 2.	85
Figura (4.25) - Atraso do simulador 2 em relação ao simulador	
Tradicional.	85
Figura (4.26) - Corrente na carga L6 do Sistema-teste 3 utilizando o	
simulador tradicional e o simulador 3.	86
Figura (4.27) - Atraso do simulador 3 em relação ao simulador	
tradicional.	86
Figura (4.28) - Corrente na carga L6 do Sistema-teste 3.	87

Figura (4.30) - Tensão na barra 1 do Sistema-teste 4. Figura (4.31) - Tensão na barra 1 do Sistema-teste 4, reconstruída. Figura (4.32) - Ampliação da região marcada na Figura (4.31). Figura (5.1) - Representação mecânica da máquina síncrona. Figura (5.2) - Representação elétrica da máquina síncrona. Figura (5.3) - Representação dos circuitos de eixos d e g do modelo	89 89 90 93 94 94 98
Figura (4.31) - Tensão na barra 1 do Sistema-teste 4, reconstruída. Figura (4.32) - Ampliação da região marcada na Figura (4.31). Figura (5.1) - Representação mecânica da máquina síncrona. Figura (5.2) - Representação elétrica da máquina síncrona. Figura (5.3) - Representação dos circuitos de eixos d e g do modelo	89 90 93 94 94 94
Figura (4.32) - Ampliação da região marcada na Figura (4.31). Figura (5.1) - Representação mecânica da máquina síncrona. Figura (5.2) - Representação elétrica da máquina síncrona. Figura (5.3) - Representação dos circuitos de eixos d e a do modelo	90 93 94 94 98
Figura (5.1) - Representação mecânica da máquina síncrona. Figura (5.2) - Representação elétrica da máquina síncrona. Figura (5.3) - Representação dos circuitos de eixos d e a do modelo	93 94 94 98
Figura (5.2) - Representação elétrica da máquina síncrona. Figura (5.3) - Representação dos circuitos de eixos d e a do modelo	94 94 98
Figura (5.3) - Representação dos circuitos de eixos d e a do modelo	94 98
	94 98
utilizado.	98
Figura (5.4) - Representação do controle de tensão do tipo a da	98
máquina síncrona.	
Figura (5.5) - Representação do controle de tensão do tipo b da	
máquina síncrona.	99
Figura (5.6) - Representação do controle de velocidade da máquina	
síncrona.	100
Figura (5.7) - Equações que compõem o bloco Gerador.	102
Figura (5.8) - Simulador com um nível de decomposição em	
sub-bandas.	103
Figura (5.9) - Simulador com dois níveis de decomposição em	
sub-bandas.	103
Figura (5.10) - Simulador com três níveis de decomposição em	
sub-bandas.	104
Figura (5.11) - Simulador multitaxa para sinais de faixa estreita	
com M níveis de decomposição em sub-bandas.	104
Figura (5.12) - Dados do Sistema-teste 5.	108
Figura (5.13) - Corrente no capacitor 3 do Sistema-teste 5.	109
Figura (5.14) - Tensão na barra 2 do Sistema-teste 5.	109
Figura (5.15) – Corrente no gerador 1, do Sistema-teste 5.	110
Figura (5.16) – Tensão reconstruída da barra 1, do Sistema-teste 5.	112
Figura (5.17) – Ampliação da região marcada na Figura (5.16).	113

Lista de Tabelas

Tabela (2.1) - Transformadas de Laplace aplicadas à Eq. (2.3).	27
Tabela (4.1) - Definição das matrizes apresentadas na Figura (4.4).	67
Tabela (4.2) - Valores dos pontos P1 e P2 mostrados na Figura (4.5).	68
Tabela (4.3) - Comparação da carga computacional - Sistema-teste 3.	87
Tabela (4.4) - Comparação da carga computacional - Sistema-teste 4.	90
Tabela (6.1) - Redução de carga computacional dos simuladores	
multitaxa. Sistemas-teste 1, 4 e 5.	115
Tabela (6.2) - Redução de carga computacional dos simuladores	
Multitaxa. Sistema-teste 2.	116
Tabela (6.3) - Redução de carga computacional dos simuladores	
Multitaxa. Sistema-teste 3.	116
Tabela (6.4) - Redução de carga computacional dos simuladores	
Multitaxa. Sistema com 3600 ramos.	116